MATHEMATICA MORAVICA
VoL. 5 (2001), 111-118

FIXED POINTS AND APICES ON ARBITRARY
| SETS

Milan R. Taskovié

Abstract. This paper presents new statements for fixed points and
apices on arbitrary nonempty sets. Applications in fixed point theory and
for general quasi-metric spaces are considered.

1. Introduction and some facts

Let X be a nonempty set. The problem of fixpoint for a given mapping
f|X is very easy to formulate: the question is if some £ € X verifies f(&) = £.
It is interesting that many problems are reducible to the existence of fixpoints
of certain mappings, as on Figure 1. The question remains whether each state-
ment could be equivalently expressed in the fixpoint language as well. The
answer is affirmative, the answers, an example, were given in: Kurepa [2]| and
Taskovié [6].

In this sense we consider a former concept of fixed apices for the map-
ping T of a nonempty set into itself. A map T of a nonempty set X to itself
has a fixed apex u € X if there is v € X such that T'(u) = v and T'(v) = u.
The points u,v € X are called fixed apices of T if T'(u) = v and T (v) = u,
as on Figure 2.

In general, for fixed integer n > 2 the points dl, ..., Un € X are called
fixed apices of T if
(1) up =T (uz2),...,un—1 = T(un) and u, = T'(uy),
or if hold the following equalities
(2) up =T(u1),...,un = T(un—1) and u; = T(u,).

We begin with the following essential fact for the further statements in
this paper.
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Lemma 1. Let X be a nonempty set and T a mapping from X into X .
Then the map T, for fized integer n > 2, has fized apices uy,...,u, € X if
and only if the map T™ := T(T™ ') has a fized point.

A brief proof for n = 2 of this statement (in the case of partially ordered
sets) may be found in Taskovié [4].

Proof. If T has fixed apices u;,...,u, € X then holds (1) or (2), i.e,,
we obtain the following equalities u; = T(up) = - - - = T™ ! (u,) = T"(uy) or

Up = T(un—l) =...=7"! (ul) = Tn(un):

which means that T™ has a fixed point. On the other hand, if the equation
z = T™(z) has a solution & = T™(¢) for some § € X, then T has fixed apices
€, TrYE), T 2(¢),. .., T(€) € X, because

€=T"(&), T" &) =T(T"*(§)),-.., T(§) = T(&);

and with this, the proof is complete.
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Figure 1 Figure 2

Let X be a nonempty set and T be a self-mapping of X. A point z € X
is called a periodic point of T if there exists a positive integer k such that
T*z = xz. The least positive integer satisfying this condition is called the
periodic index of z.

In connection with this, we notice that the preceding Lemma 1 has the
following equivalently formulation.

Lemma la. Let X be a nonempty set and T a mapping from X into
X. Then the map T, for fized integer n > 2, has fized apices uy, ... ,u, € X
if and only if the map T has the periodic point with periodic index n > 2.

The proof of this fact is a totally analogous to the proof of the preceding
Lemma 1.
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2. Main statements on arbitrary sets

In recent years a great number of papers have presented the statements
of fixed point on spaces and ordered sets. In this section we are now in a posi-
tion to formulate the following main statements for fixed points and apices on
arbitrary nonempty sets. This statements we consider on arbitrary nonempty
sets without metrical and topological architecture.

Theorem 1. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, %,<) be a partially ordered set, where for any p € P the case
p < p is impossible. If there exists a mapping B : X — P such that

(B) B(Tz) < B(z) foreveryz € X (x # Tx)
(D) B(Tz) > B(z) for everyxz € X (z # Tx)

then T has a fized point in X if and only if there exist integers m and n,
m>n >0, and a point z € X such that

(Co) T™(2) = T"(2).

Proof. Let £ € X be a fixed point of T, i.e., £ = T¢. Then (Co) is true
in case m = 1 and n = 0. Conversely, suppose that there exists a point y € X
and two integers m and n, m > n > 0, such that (Co) is satisfied.

Then, (Co) is equivalent to the equality 7" "a = z, where a = T™z and
k := m—n is the minimal integer satisfying T*a = a (k > 1). Applying Lemma
la to this case, we obtain that the map T has fixed apices uy,...,u; € X for
k > 2. Suppose that u,,...,ux € X are not fixed points of T" for k > 2. (If
k =1, then the statement directly holds). Thus, from (1) and (2), we obtain

(3) Uy = T(U2), ey Uk—1 = T(uk) and Uk = T(ul)
or
(4) up = T(u1),. .., ux = T(uk—1) and uy = T (ux);

which means, by (B), it follows that the following inequalities hold
(5) B(uy) = B(T'ug) < B(ug) % - - < B(ukx) = B(Tuy) < B(u;)
or

B(u1) = B(Tug) < B(ug) = B(Tug-1) < Bug—1) < -+
(6) -+ < B(uz) = B(Tuy) < B(ug) = B(Tu1) < B(uy),

which is a contradiction. Therefore there is at least one point u; € X (2 =
1,...,k) such that u; = Tu; for some u; € X.
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In the case (D), from (3) and (4), we have
B(ur) = B(Tu;) > B(u1) = B(Tuz) > B(ug) > - - -
(7) -+ 3= B(ug—1) = B(Tug) > B(ug)

B(u1) = B(Tug) > B(ug) = B(Tug-1) > B(ux—1) % - -

(8) -+ %= B(ug) = B(Tu1) > B(u1),
which is a contradiction. Therefore there is at least one point u; € X (i =
1,...,k) such that u; = Tu; for some u; € X, i.e., T has at least one fixed

point in X. The proof is complete.

As an immediate consequence of the preceding statement we obtain the
following result.

Theorem 2. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, <,=<) be a partially ordered set, where for any p € P the case
p < p is impossible. If there erists a mapping A: X x X — P such that

(A) ATz, Ty) < A(z,y) forallz,ye€ X(z 7’: Y),
or
(C) A(Tz,Ty) > A(z,y) for allz,y € X(x # y),

then T has a unique fized point in X if and only if there exist integers m and
n, m>n>0, and a point z € X such that

(Co) T™(z) = T™(z).

Proof. For y = Tz # z, from (A) or (C) we have the following facts in
the form

A(Tz,T?z) < A(z, Tz) for every z € X (z # Tx)
or
A(Tz,T%) = A(z,Tz) for every x € X (z # Tx);

and hence, for B(z) = A(z, Tz) with z # Tz, we obtain the condition (B) or
(D) in Theorem 1. Since X satisfies all conditions of the preceding statement,
applying Theorem 1 gives T¢ = £ for some £ € X if and only if (Co) holds.
Uniqueness follows immediately from the condition (A) or (C). The proof is
complete. _

In connection with the preceding facts, since de facto Lemma 1 is equiv-
alent to Lemma 1a, thus we can Theorems 1 and 2 write in the following two
extension forms.
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Theorem 1a. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, <, <) be a partially ordered set, where for any p € P the case
p < p is impossible. If there exists a mapping B : X — P such that (B) or
(D), then T has a fized point in X if and only if for T there exist fized apices
Ui, ..., U, € X for fizred integer n > 2.

Proof. Let £ € X be a fixed point of T', i.e., £ = T¢; then the equation
z = T™(z) has a solution £ = T"(£) and thus, from Lemma 1, the map 7" has
fixed apices u1,...,u, € X for fixed integer n > 2.

Conversely, if there exist fixed apices uy,...,u, € X for fixed integer
n > 2, then we have (1) and (2). Suppose that u1,...,u, € X are not fixed
points of T' for n > 2. Thus, by (B) it follows that (5) or (6) and by (D) it
follows that (7) or (8), where the index k substitute with the index n. Since
the cases (5) to (8) are impossible, therefore there is at least one fixed point
of the points u; € X (i =1,...,n). The proof is complete.

Theorem 2a. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, <,~<) be a partially ordered set, where for any p € P the case
p < p is impossible. If there exists a mapping A : X x X — P such that (A)
or (C), then T has a unique fized point in X if and only if for T there exist
fized apices uy, ... ,un € X for fizred integer n > 2.

Proof. The necessary condition is obvious. The proof of the sufficiently
condition is a totally analogous to the proof of the preceding Theorems 2 and
la, and thus we omit it.

3. Further facts and consequences

In connection with the preceding statements, from our the Principle of
Symmetry (see: Taskovié, Math. Japonica, 35 (1990}, p. 661), we obtain as
an immediate extension of Theorem 1 the following statement.

Theorem 1b. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, <, =) be a partially ordered set, where for any p € P the case
p < p is impossible. If there exists a mapping B : X — P and for eachz € X
there is a positive integer r = r(x) such that

(9) B(T"z) < B(z) forz#Tz

(10) B(T"z) > B(z) forxz#T z,
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then T has a fized point in X if and only if there exist integers m and n,
m >n >0, and a point 2 € X such that (Co).

On the other hand, from the Principle of Symmetry, similar to the
preceding statement, as an immediate extension of Theorem 2, we obtain the
following statement.

Theorem 2b. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, %,<) be a partially ordered set, where for any p € P the case
p < p is impossible. If there ezists a mapping A: X x X — P and if for each
z € X there is a positive integer r = r(z) such that

(11) ATz, T7y) < A(z,y) for everyy € X, z #y,
or
(12) ATz, T™y) > Alz,y) foreveryy€ X, z #y,

then T has a unique fized point in X if and only if there exist integers m and
n, m>n >0, and a point z € X such that (Co).

Since Lemma 1 is equivalent to Lemma 1a, thus we obtain very similar
to Theorem 1b the following statement which is an extension of Theorems 1
and la.

Theorem 1c. Let X be a nonempty set, T be a self-mapping of X and
let P := (P, <,=<) be a partially ordered set, where for any p € P the case
p < p s impossible. If there exists a mapping B : X — P and for eachx € X
there is a positive integer r = r(x) such that (9) or (10), then T has a fized
point in X if and only if for T there exist fized apices uy, ... ,un, € X for fized
integer n > 2.

As in this statement, a totally analogous with the preceding facts is the
following result, which is an extension of Theorems 2 and 2a.

Theorem 2c. Let X be a nonempty set, T’ be a self-mapping of X and
let P := (P, =,=) be a partially ordered set, where for any p € P the case
p < p is impossible. If there exists a mapping A : X x X — P and if for
each x € X there is a positive integer r = r(z) such that (11) or (12), then
T has a unique fized point in X if and only if for T there exist fized apices
U, ... ,Un € X for fized integer n > 2.

For further applications, we give some fixed point theorems for map-
pings in general quasi-metric spaces. In this sense, let (G, %, <) be a partial
order set satisfying the following conditions:  is the minimal element in G;
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for any u, v € G the element sup{u, v} exists and belongs to G; for any u € G
the case u < wu is impossible; and for any w,v,w € G, © < w and v < w
implies sup{u,v} < w, and u < v < w implies u < w.

Let X be a nonempty set. The pair (X, p) is called general quasi-
metric spaceif p: X xX — G := (G, %, <) satisfies the following conditions:
o(z,y) = 6 if and only if z =y, and p(z,y) = p(y,z) for all z,y € X.

Corollary 1. (Chang, Huang and Cho [1]). Let (X, p) be a general
quasi-metric space and T be a self-mapping of X. If assume that for any
z,y € X (z # y) the following fact holds

(13)  p(Tz,Ty) < sup {p(a, 1), p(, T2), p(y, Tv), p(x, T), p(y, T) },

then T has a unique fized point in X if and only if there exists a periodic
pointé € X of T. :

Proof. Let an(z) = sup{p(T?z,T’z) : i,j > n} for each n € N. This
sequence is nonincreasing in G and 0 < a,(z) for every n € N. Then, from
(13) for 4, j € N we obtain the following facts

p(Ttz, T?x) < sup {p(T‘i_la:,Tj_lx), .. ,p(Tj'la:,Tim} =<

< sup {an_l(x), ... ,an_l(x)} = ap—1(2),

ie., p(T" Y (Tx), T?""YTz)) < an_1(z) for every z € X and = # Tz. Thus,
an-1(TZ) < ap—_1(z) for every z € X and z # Tz. This means that the
condition (B) in Theorem 1a holds for B(z) = an—1(z); then X and G satisfy
all the required hypotheses in Theorem la. Applying Theorem la and the
preceding facts we obtain that T has a fixed point in X if and only if there
exist fixed apices u1,...,un € X, i.e., from Lemmas 1 and 1a, if and only if
there exists a periodic point in X. Uniqueness follows immediately from the
condition (13). The proof is complete.

In connection with this, from the Principle of Symmetry, as an imme-
diately analogy with this statement we obtain directly the following result.

Corollary 2. Let (X, p) be a general quasi-metric space and T be a
self-mapping of X. If assume that for every x € X there ezists a positive
integer r = r(z) such that

p(T"5, T7y) < sup {p(z, ), p(z, T"2), p(4, T"Y), p(x, T79), p(y, ')}

for every y € X, then T has a unique fized point in X if and only if for T
there exist fized apices uy,...,u, € X for fized integer n > 2.

Open problems. We notice that the preceding Theorems 1b, 2b, 1c
and 2c¢ are given (formulate) via our the Principle of Symmetry. Does new
proofs of this statements (i.e., Theorems 1b, 2b, 1c¢ and 2c) can be given
elementary and directly without usage of the Principle of Symmetry?
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